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SUMMARY
• Connectivity analyses in multichannel recordings with bivariate methods 

produce high-dimensional, difficult to interpret results.
• Averaging connections to reduce the dimensionality lowers SNR if 

signals sit outside oscillatory sources.
• In contrast, multivariate methods produce interpretable, low-

dimensional results with high SNR.
• MNE-Python is a popular signal processing toolbox for Python [1].
• MNE-Connectivity builds on the MNE-Python API to offer connectivity 

estimation tools.
• We have implemented advanced, multivariate connectivity estimation 

methods in MNE-Connectivity (available as of v0.6).

UNDIRECTED CONNECTIVITY: Coherency-based methods
• Correlation in the frequency domain.
• Bivariate: coherency; coherence; imaginary part of coherency [2].
• Multivariate: canonical coherency [3]; maximised imaginary part of 

coherency [4]; multivariate interaction measure [4].
• Uses eigendecomposition-based spatial filters to optimise 

connectivity; provides corresponding spatial maps of connectivity [5].

DIRECTED CONNECTIVITY: Granger causality
• Degree to which one signal predicts another [6].
• Bivariate: Granger causality [7].
• Multivariate: State-space Granger causality [8].
• Uses state-space transformation of autoregressive model; compatible 

with time-reversal-correction for spurious connectivity artefacts [9].
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Check out MNE-Connectivity:
mne.tools/mne-connectivity/

METHODS IN ACTION: Analysis of cortex – basal ganglia connectivity in Parkinson’s disease patients

• Electrocorticography (ECoG) strips targeting motor cortex and 
deep brain stimulation (DBS) leads targeting subthalamic nucleus 
(STN) implanted in Parkinson’s disease patients.

• Resting-state recordings of cortex and STN activity taken: in 
absence of therapy (OFF therapy); with dopaminergic medication 
(ON levodopa); and with STN DBS (ON STN-DBS).

• Analysis of undirected connectivity (maximised imaginary part of 
coherency) and directed connectivity (time-reversed, state-space 
Granger causality) between cortex and STN.

Results in
more detail:
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