PyBispectra

An open-source toolbox for advanced electrophysiological signal processing based on the bispectrum

Thomas Samuel Binns ^{1,2}, Franziska Pellegrini ³, Tin Jurhar ³, Stefan Haufe ³

1. Movement Disorders Unit, Charité - Universitätsmedizin Berlin, Germany 2. Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Germany 3. Electrical Engineering and Computer Science Department, Technische Universität Berlin, Germany

BACKGROUND

- Phase-amplitude coupling, time delays, and non-sinusoidal waveform features provide insights into neuronal function and dysfunction.
- Common methods for these analyses possess notable limitations.
- The bispectrum the Fourier transform of the third order moment can quantify these features without many of the limitations.
- We present PyBispectra, an open-source Python-based toolbox for analysing electrophysiological signals using the bispectrum.

Easy-to-use, with simple syntax

Detailed API documentation and in-depth tutorials

High performance, with low-level source code compilation and support for parallel processing

Check out the toolbox: pybispectra.readthedocs.io

The bispectrum has the fundamental form

 $\mathbf{B}_{kmn}(f_1, f_2) = \langle \mathbf{k}(f_1)\mathbf{m}(f_2)\mathbf{n}^*(f_2 + f_1) \rangle$

where **B** is the bispectrum; *kmn* is a combination of signals with Fourier coefficients **k**, **m**, and **n**, respectively; f_1 and f_2 correspond to a lower and higher frequency, respectively; and <> represents the average value over epochs.

USE CASE: WAVESHAPE ANALYSIS [1]

Motivation: non-sinusoidal features reflect synaptic input synchrony and are biomarkers of neurological disorders.

Common method: time-series analysis – necessary preprocessing steps (e.g. bandpass filtering) can corrupt underlying signal shape; computationally expensive for high sampling rate data.

Bispectrum: extracts information about sawtooth (rise-decay asymmetry) and spike (peak-trough asymmetry) characteristics provides a frequency-resolved result (no need to bandpass); computationally cheap, even for high sampling rate data.

Example: non-sinusoidal features at 10 Hz and harmonics

Sawtooth signal

PyBispectra Pipeline

0. Preprocessing (Optional)

from pybispectra import SpatioSpectralFilter

Enhance the signal-to-noise ratio for a frequency band of interest.

1. Compute Frequency Information from pybispectra import compute_fft, compute_tfr Compute the (time-)frequency representation of data.

2. Compute Results

 t_1 (phase)

from pybispectra import PAC, PPC, AAC, TDE, WaveShape

Support for cross-frequency coupling (phase-amplitude, phase-phase, amplitude-amplitude), time delay estimation, and waveshape analysis.

Example Code (Phase-Amplitude Coupling)

USE CASE: TIME DELAY ESTIMATION [2, 3]

Motivation: reflects the physical connections between brain regions.

Common method: cross-correlation – compromised by volume conduction.

conduction **Bispectrum:** immune to volume artefacts with antisymmetrisation.

Example: time delay estimation at 250 ms

 $\overline{}_{1}$

coeffs, freqs = compute_fft(data, sampling_freq) pac = PAC(coeffs, freqs, sampling_freq) pac.compute() pac_results = pac.results pac_results.plot()

USE CASE: PHASE-AMPLITUDE COUPLING [4, 5]

Motivation: mechanism for integrating information between neuronal systems across spatiotemporal scales, disrupted in neurological disorders.

Common method: modulation index – requires the use of precise, difficult to find filters; relies on the computationally-expensive Hilbert transform; compromised by volume conduction.

Bispectrum: no filters required; relies on the computationally-cheap Fourier transform; immune to volume conduction artefacts with antisymmetrisation.

Example: 10-60 Hz phase-amplitude coupling

65

 \frown

References: [1] Bartz et al. (2019). Analyzing the waveshape of brain oscillations with bicoherence. Neurolmage; [2] Nikias & Pan (1988). Time delay estimation in unknown Gaussian spatially correlated noise. IEEE Transactions on Acoustics, Speech, and Signal Processing; [3] Jurhar et al. (In Preparation). Estimating signal time-delays under mixed noise influence with novel cross- and bispectrum methods; [4] Zandvoort & Nolte (2021). Defining the filter parameters for phaseamplitude coupling from a bispectral point of view. Journal of Neuroscience Methods; [5] Pellegrini et al. (In Preparation). Distinguishing across- from within-site phase-amplitude coupling.

